Optimal operation of heat exchanger networks with stream split: Only temperature measurements are required
نویسندگان
چکیده
For heat exchanger networks with stream splits, we present a simple way of controlling the split ratio. We introduce the “Jäschke Temperature”, which for a branch with one exchanger is defined as TJ = (T − T0)/(Th − T0), where T0 and T are the inlet and outlet temperatures of the split stream (usually cold), and Th is the inlet temperature of the other stream (usually hot). Assuming the heat transfer driving force is given by the arithmetic mean temperature difference, the Jäschke Temperatures of all eywords: eat exchanger networks arallel systems elf-optimizing control ptimal operation branches must be equal to achieve maximum heat transfer. The optimal controlled variable is the difference between the Jäschke Temperatures of each branch, which should be controlled to zero. Heat capacity or heat transfer parameters are not needed, and no optimization is required to find the optimal setpoints for the controlled variables. Most importantly, our approach gives near-optimal operation for systems with logarithmic mean temperature difference as driving force. © 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
A Simple Control Scheme for Near-optimal Operation of Parallel Heat Exchanger Systems
For heat exchanger networks with stream splits, we present a simple way of controlling the split ratio. We introduce the ”Jäschke Temperature”, which for a branch with one exchanger is defined as TJ = (T−T0) Th−T0 , where T0 and T are the inlet and outlet temperatures of the split stream (usually cold), and Th is the inlet temperature of the other stream (usually hot). Assuming the heat transfe...
متن کاملControl structure design for optimal operation of heat exchanger networks
When only single bypasses and utility duties are used as manipulations, optimal operation of heat exchanger networks (HENs) can be categorized as an active constraint control problem. This work suggests a simple split-range control scheme to implement the optimal operation. The control structure can be found by solving an integer-linear programming (ILP) problem with two objective functions pro...
متن کاملThe Overall Heat Transfer Characteristics of a Double Pipe Heat Exchanger: Comparison of Experimental Data with Predictions of Standard Correlations
The single-phase flow and thermal performance of a double pipe heat exchanger are examined by experimental methods. The working fluid is water at atmospheric pressure. Temperature measurements at the inlet and outlet of the two streams and also at an intermediate point half way between the inlet and outlet is made, using copper-constantan thermocouple wires. Mass flow rates for each stream are ...
متن کاملA Simple Strategy for Optimal Operation of Heat Exchanger Networks
The objective of this work is to propose a systematic procedure to find a control structure for optimal operation of heat exchanger networks. Optimal operation in this context requires that 1) all controlled temperatures are kept at their targets and 2) utility cost is minimized. The degrees of freedom of heat exchanger networks are analyzed and used to identify if the operation is structurally...
متن کاملOptimal operation of heat exchanger networks
The paper discusses optimal operation of a general heat exchanger network with given structure, heat exchanger areas and stream data including predefined disturbances. A formulation of the steady state optimization problem is developed, which is easily adapted to any heat exchanger network. Using this model periodically for optimization, the operating conditions that minimize utility cost are f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Chemical Engineering
دوره 70 شماره
صفحات -
تاریخ انتشار 2014